Carregando

Renata Zukanovich Funchal

Ordenar por:   Relevância   |   Título   |   Por data (mais novo ao mais antigo)
90 resultados encontrados
Nessa aula recapitulamos algumas ideias matemáticas importantes e necessárias para desenvolver a descrição de sistemas físicos na mecânica quântica : a noção de espaço de Hilbert, operadores lineares (hermitianos, anti-hermitianos, unitários, simétricos), projetores e bases de representação.
Nessa aula discutimos o teorema de Wigner que determina que os operadores de simetria na Mecânica Quântico só podem ser unitários ou antiunitários. Apresentamos o único operador de reversão temporal, o único caso conhecido de operador antiunitário que aparece na Física. Mostramos as propriedades desse operador e construímos explicitamente a forma do operador de reversão temporal para sistemas de spin 0 e spin 1/2.
Nesta aula discutimos a adição de momento angular na Mecânica Quântica, mostramos que existem duas bases que podemos usar para descrever o sistema composto de dois sub-sistemas de momento angular 𝑗1e 𝑗2: a base desacoplada e a base acoplada. Calculamos os valores possíveis para o momento angular total do sistema. Vemos que o espaço de Hilbert H𝑗1𝑗2 é um espaço redutível que pode ser decomposto em espaços de Hilbert irredutíveis 2(𝑗1+𝑗2)+1,..., 2|𝑗1−𝑗2|+1 invariantes por rotação. Encontramos a relação entre as bases acoplada e desacoplada definindo os chamados coeficientes de Clebsh-Gordan. Finalmente, discutimos as regras de seleção para os elementos de matriz não nulos de um operador vetorial na base {|𝑗𝑚⟩} a partir de propriedades de rotação.
Nesta aula discutimos a adição de momento angular na Mecânica Quântica, mostramos que existem duas bases que podemos usar para descrever o sistema composto de dois sub-sistemas de momento angular j1 e j2: a base desacoplada e a base acoplada. Calculamos os valores possíveis para o momento angular total do sistema. Vemos que o espaço de Hilbert j1 j2 pode ser decomposto em espaços irredutíveis 2(j1+j2)+1,...,2|j1-j2|+1 invariantes por rotação. Discutimos as regras de seleção para os elementos de matriz não nulos de um operador vetorial na base {|jm>} a partir de propriedades de rotação.
Nessa aula discutimos o efeito Doppler do som e da luz e algumas de suas aplicações.
Nessa aula discutimos como incluir partículas com spin no cálculo das seções de choque de espalhamento usando o formalismo de matriz densidade. Exemplificamos com um exemplo simples: uma partícula de spin 1/2 colidindo com um alvo de spin 0 admitindo que o feixe inicial esteja ou não esteja polarizado.
Nessa aula discutimos sistemas que podem ser descritos pelo Hamiltoniano de um oscilador harmônico livre e encontramos os autovetores e autovalores desse sistema, construindo assim o espectro livre. Definimos os operadores de abaixamento e levantamento que nos auxiliam a construir os estados estacionários e a calcular o valor esperado de diversos observáveis. Em seguida, consideramos o Hamiltoniano que descreve um oscilador forçado. Encontramos as equações de Heisenberg para o operador de abaixamento e a solução dessa equação. Introduzimos o operador deslocamento que nos auxilia a descrever a evolução temporal do operador de abaixamento. Construimos o estado fundamental evoluído no tempo sob ação do potencial de um oscilador harmônico forçado.
Discutimos sistemas que podem ser descritos pelo Hamiltoniano de um oscilador harmônico livre e encontramos os autovetores e autovalores desse sistema, construindo assim o espectro livre. Definimos os operadores de abaixamento e levantamento que nos auxiliam a construir os estados estacionários e a calcular o valor esperado de diversos observáveis. Em seguida, consideramos o Hamiltoniano que descreve um oscilador forçado. Encontramos as equações de Heisenberg para o operador de abaixamento e a solução dessa equação. Introduzimos o operador deslocamento que nos auxilia a descrever a evolução temporal do operador de abaixamento. Construimos o estado fundamental evoluído no tempo sob ação do potencial de um oscilador harmônico forçado.
Nessa aula discutimos a relação entre os polos nas amplitudes de espalhamento, os estados ligados e as chamadas ressonâncias.
Nesta aula definimos estados coerentes, que são estados particulares do oscilador harmônico cujo valor esperado dos operadores de coordenada e momento tem evolução temporal semelhante à evolução clássica. Esses estados tem a propriedade de que as incertezas na posição e momento saturam a relação de incerteza de Heisenberg, o que é uma propriedade conservada pela evolução temporal do estado. Desenvolvemos aqui o formalismo de Glauber construindo os estados coerentes, autoestados do operador de abaixamento 𝑎, deslocando o estado fundamental do oscilador harmônico livre usando o operador deslocamento 𝐷(𝑧). Discutimos também o caso de uma partícula carregada em um campo magnético estático e uniforme e mostramos como esse problema se relaciona ao de um oscilador harmônico unidimensional
90 resultados encontrados

 

Pró-Reitoria de Graduação
Telefone: +55 11 3091-9942