Carregando

Encontro 01-1-Geometria, com o uso do Geogebra, na solução de problemas de Olimpíadas e Vestibulares

por JUAN LÓPEZ LINARES

Incorporar
Recomendar
Download
     
Gostei (7)

Formatos disponíveis

Assista a esse vídeo em: MP4 (1280 X 720 px) | MP4 (640 X 360 px)

Licença de cópia, reuso e redistribuição

Sobre a aula

Somas dos ângulos internos em um triângulo, critérios para encontrar triângulos isósceles, maior lado de um triângulo oposto ao maior ângulo, desigualdade triangular, lei da reflexão. Se discutem problemas de Olimpíadas da área de Geometria. Este vídeo está incluído nas playlists "Geometria com Geogebra". Mais em https://www.youtube.com/watch?v=AYxBZb3z8Bw&list=PL8v7luSb9qi6tg7XIcqfG_hT-qU-r4qS_.

Disciplina

74.02.00004-1 Geometria, com o uso do Geogebra, na solução de problemas de Olimpíadas e Vestibulares

EMENTA

Módulo 1: Construções e conceitos básicos
Construção de triângulos Acutângulos, Retângulos, Obtusângulos, Isósceles e
Equiláteros.
Base Média de um triângulo.
Desigualdade Triangular e Lei da Reflexão.
Construção do pentágono regular.
Construção das retas mediatriz e bissetriz.
Construção das circunferências inscritas, circunscrita e ex-inscritas a um triângulo.
Construção de retas tangentes a uma circunferência.
Construção do Arco Capaz, ângulo inscrito, de segmento e central em uma
circunferência.
Critérios de congruências de triângulos (LLL, ALA, LAL, CH, LAAo) e construções
correspondentes.
Semelhança de Triângulos por Homotetia no Geogebra. Cevianas e critério de
paralelismo.
Demonstração do Teorema de Pitágoras.
Teorema de Tales de um feixe de retas paralelas e duas transversais.
Teorema da Bissetriz Interna e Externa. Divisão harmônica de um segmento.
Circunferência de Apolônio.
Módulo 2: Aplicações e problemas avançados
Construção das retas tangentes internas e externas a duas circunferências
simultaneamente. Eclipse Lunar Total.
Análise das relações áureas no pentágono regular.
Divisão de um segmento em partes iguais. Aplicação do Teorema de Tales.
Demonstração que a circunferência de Apolônio de Perga é um lugar geométrico. T.
da Bissetriz.
Demonstração da incomensurabilidade do lado e a diagonal de um quadrado. Prova
por absurdo.
Construção de uma Homotetia no Geogebra. Ampliação ou redução a partir de um
ponto fixo.
Resolução de problema da Olimpíada Internacional de Matemática: P4 de 1973,
Desigualdade Triangular, Reflexão e Teorema de Pitágoras.
Resolução de problema da Olimpíada Internacional de Matemática: P3 de 1979,
Congruência de Triângulos LAL, Paralelogramo e Velocidade Angular

Objetivo

Ao final do curso espera-se que os professores tenham desenvolvido conhecimentos relacionados a uso do software gratuito Geogebra. Também que se sintam confortáveis na discussão em suas salas de aula de problemas de Geometria, que aparecem em Olimpíadas.

Mais especificamente, espera-se que o professor seja capaz de: identificar problemas que podem ser resolvidos com o apoio do Geogebra e reconhecer as ferramentas básicas de construção geométrica; realizar construções geométricas envolvidas nos cursos de Geometria do Ensino Fundamental e Médio; criar aulas e apresentações, melhorando sua exposição didática.

Índice de vídeos da disciplina

Superintendência de Tecnologia da Informação