Carregando

T00-GOG-I-2024: Dúvidas sobre o curso e introdução às plataformas GeoGebra e Moodle USP Extensão

por JUAN LÓPEZ LINARES

Incorporar
Recomendar
Download
     
Gostei (0)

Formatos disponíveis

Assista a esse vídeo em: MP4 (1280 X 720 px) | MP4 (640 X 360 px)

Licença de cópia, reuso e redistribuição

Sobre a aula

E-books de Geometria Olímpica com GeoGebra: https://www.amazon.com.br/hz/wishlist/ls/2529WAIUXJZ34, livros impressos: https://www.amazon.com/hz/wishlist/ls/2B7XL0PCPL2QN
- Cadastro GRATUITO para ser avisado de futuras edições dos cursos de "Geometria Olímpica com GeoGebra" em https://forms.gle/6ZZ2fM9bLYUzjjUD6.
- Canal no Youtube: https://www.youtube.com/juanlopezlinares.
- GeoGebra: https://www.geogebra.org/u/jlopezlbr.

Disciplina

74.02.00004-1 Geometria, com o uso do Geogebra, na solução de problemas de Olimpíadas e Vestibulares

EMENTA

Módulo 1: Construções e conceitos básicos
Construção de triângulos Acutângulos, Retângulos, Obtusângulos, Isósceles e
Equiláteros.
Base Média de um triângulo.
Desigualdade Triangular e Lei da Reflexão.
Construção do pentágono regular.
Construção das retas mediatriz e bissetriz.
Construção das circunferências inscritas, circunscrita e ex-inscritas a um triângulo.
Construção de retas tangentes a uma circunferência.
Construção do Arco Capaz, ângulo inscrito, de segmento e central em uma
circunferência.
Critérios de congruências de triângulos (LLL, ALA, LAL, CH, LAAo) e construções
correspondentes.
Semelhança de Triângulos por Homotetia no Geogebra. Cevianas e critério de
paralelismo.
Demonstração do Teorema de Pitágoras.
Teorema de Tales de um feixe de retas paralelas e duas transversais.
Teorema da Bissetriz Interna e Externa. Divisão harmônica de um segmento.
Circunferência de Apolônio.
Módulo 2: Aplicações e problemas avançados
Construção das retas tangentes internas e externas a duas circunferências
simultaneamente. Eclipse Lunar Total.
Análise das relações áureas no pentágono regular.
Divisão de um segmento em partes iguais. Aplicação do Teorema de Tales.
Demonstração que a circunferência de Apolônio de Perga é um lugar geométrico. T.
da Bissetriz.
Demonstração da incomensurabilidade do lado e a diagonal de um quadrado. Prova
por absurdo.
Construção de uma Homotetia no Geogebra. Ampliação ou redução a partir de um
ponto fixo.
Resolução de problema da Olimpíada Internacional de Matemática: P4 de 1973,
Desigualdade Triangular, Reflexão e Teorema de Pitágoras.
Resolução de problema da Olimpíada Internacional de Matemática: P3 de 1979,
Congruência de Triângulos LAL, Paralelogramo e Velocidade Angular

Objetivo

Ao final do curso espera-se que os professores tenham desenvolvido conhecimentos relacionados a uso do software gratuito Geogebra. Também que se sintam confortáveis na discussão em suas salas de aula de problemas de Geometria, que aparecem em Olimpíadas.

Mais especificamente, espera-se que o professor seja capaz de: identificar problemas que podem ser resolvidos com o apoio do Geogebra e reconhecer as ferramentas básicas de construção geométrica; realizar construções geométricas envolvidas nos cursos de Geometria do Ensino Fundamental e Médio; criar aulas e apresentações, melhorando sua exposição didática.

Índice de vídeos da disciplina

Superintendência de Tecnologia da Informação