This is a modal window.
Assista a esse vídeo em: MP4 (1152 X 720 px) | MP4 (576 X 360 px)
Nessa aula discutimos o problema de uma partícula carregada em um campo magnético estático e uniforme no gauge simétrico. Encontramos os auto-estados simultâneos do Hamiltoniano no plano transversal à direção do campo magnético e de momento angular Lz. Mostramos que existem infinitos estados para cada nível da Landau.
Discutimos o mesmo problema usando estados coerentes, sem a necessidade da escolha de um gauge particular.
Calculamos no gauge simétrico as funções de onda dos estados fundamentais do sistema e mostramos que elas tem as propriedades esperadas, em particular, que são autoestados de Lz.
1. Fundamentos da Teoria Quântica. Espaço de Hilbert, estados e probabilidades, quantização canônica. Equações de movimento, descrições de Schrödinger, Heisenberg e de Interação.
2. Simetrias e leis de conservação. Rotações, momento angular orbital e spin, adição do momento angular. Estados de partícula livre. Potenciais centrais. Espectro discreto. Espectro contínuo em um potencial de curto alcance e estados de espalhamento.
3. Métodos de aproximação: métodos perturbativos para estados estacionários e para evolução temporal; princípio variacional.
4. Sistemas quânticos de baixa dimensionalidade: sistemas de dois níveis, oscilador harmônico, movimento em campo magnético. Espalhamento em uma dimensão e aproximação WKB.
5. Átomos Hidrogenóides. Estrutura fina e hiperfina. Efeito Zeeman e Stark.
Desenvolver familiaridade com as idéias e métodos da Mecânica Quântica e proficiência em sua aplicação a problemas físicos.