Análise Sintática Determinística

Uma apresentação comparada de alguns métodos clássicos de análise

Aula 09: Parte 2 – Análise Ascendente

ANÁLISE SINTÁTICA ASCENDENTE

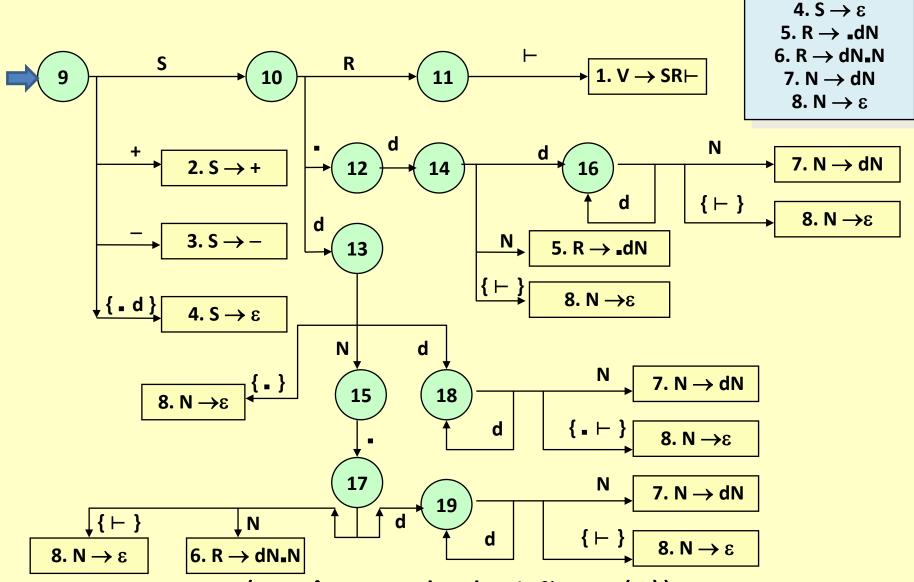
Analisadores Ascendentes

- LR(k) constitui a classe mais abrangente de gramáticas do tipo 2, compreendendo todas as linguagens que propiciam a elaboração de analisadores determinísticos (inclusive todas as LL(k))
- Logo, os analisadores ascendentes formam a classe mais ampla possível de analisadores determinísticos.
- Na sua operação,
 - em vez de derivações, empregam reduções
 - usam tabelas de análise, e uma pilha
- Empregam transições de três tipos:
 - READ (consumo de símbolo)
 - LOOK AHEAD (exame de símbolo, sem consumo)
 - APPLY (redução: aplicação de uma regra de produção)

Gramáticas LR(k)

LR(k) significa:

- **L** = <u>L</u>eft to right analysis
- $-\mathbf{R} = \underline{R}ightmost\ derivation$
- $-\mathbf{k} = k$ -symbol look-ahead


Uma gramática é LR(k) quando:

— Para qualquer produção $A \rightarrow \alpha$ não houver outra produção na gramática que possa substituí-la em derivações da forma:

$$S \Rightarrow * \beta A \gamma \Rightarrow * \beta \alpha \gamma$$

- A análise tem início nos átomos da sentença, em direção à raiz da gramática (feita de baixo para cima – bottom-up)
- As reduções são relativas ao não-terminal mais à direita na forma sentencial (aplicam-se na ordem inversa da derivação)
- Determina-se a produção a aplicar inspecionando-se α , β e, no máximo, k símbolos iniciais de γ (estes, todos terminais)

Um Analisador LR(1)

(Autômato de decisão LR(1))

1. $V \rightarrow SR \vdash$

2. $S \rightarrow +$ 3. $S \rightarrow -$

Montagem do autômato de decisão (1)

Parte-se da gramática, em particular, da produção 1, que define sua raiz, marcada à esquerda:

Gramática

1.
$$V \rightarrow SR \vdash$$

$$2. S \rightarrow +$$

3.
$$S \rightarrow -$$

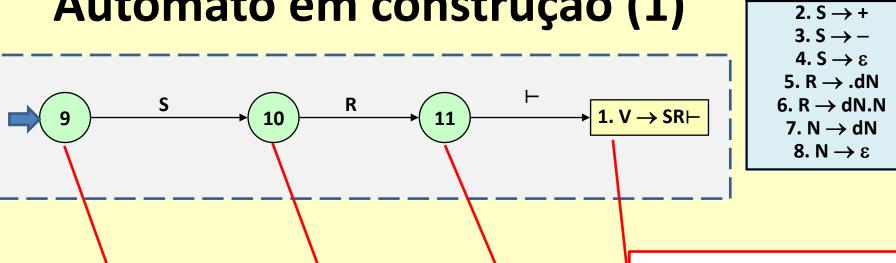
4.
$$S \rightarrow \epsilon$$

5.
$$R \rightarrow .dN$$

6. R
$$\rightarrow$$
 dN.N

7. N
$$\rightarrow$$
 dN

8. N
$$\rightarrow \epsilon$$


$$V \rightarrow {}^{\bullet}SR \vdash$$

Montam-se para ela todos os itens LR(1), a cada qual fica associado um estado do autômato de decisão.

9.
$$[V \rightarrow \bullet SR \vdash]$$

10. $[V \rightarrow S \bullet R \vdash]$
11. $[V \rightarrow SR \bullet \vdash]$
1. $[V \rightarrow SR \vdash \bullet]$

Em seguida, cada um desses itens deve ser trabalhado de forma análoga, para desenvolver os conjuntos de itens referentes aos eventuais nãoterminais à direita das respectivas marcas.

Autômato em construção (1)

1. $[V \rightarrow SR \vdash \bullet]$

1. $V \rightarrow SR \vdash$

11. $[V \rightarrow SR \bullet \vdash]$

10. $[V \rightarrow S \cdot R \vdash]$

9. $[V \rightarrow \bullet SR \vdash]$

Montagem do autômato de decisão (2)

O ítem 9:

apresenta o marcador à esquerda de um nãoterminal S. Isso exige a expansão de S segundo as regras 2, 3, 4, pela adição de estados associados a itens com marcadores à esquerda dos lados direitos dessas três regras:

Nesses itens, não há não-terminais à direita de marcadores, portanto novas expansões não são necessárias, completando-se assim o conjunto de itens LR(1) associados ao estado 9

Notar que, na regra 4 marcada, está indicado o conjunto follow (S) = first (R) = $\{. d\}$ devido ao ϵ

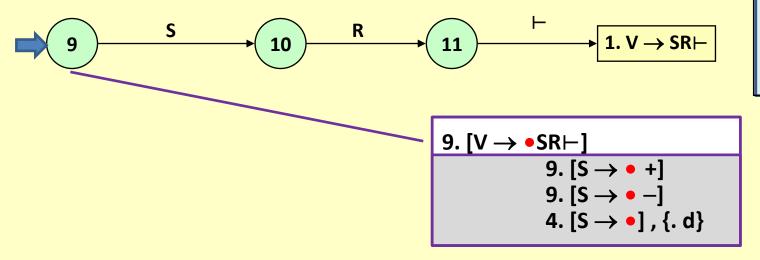
Gramática

1.
$$V \rightarrow SR \vdash$$

$$2. S \rightarrow +$$

3.
$$S \rightarrow -$$

$$4. S \rightarrow \epsilon$$


5.
$$R \rightarrow .dN$$

6.
$$R \rightarrow dN.N$$

7.
$$N \rightarrow dN$$

8. N
$$\rightarrow \epsilon$$

Autômato em construção (2)


```
\begin{array}{c}
1. \text{ V} \rightarrow \text{SR} \vdash \\
2. \text{ S} \rightarrow + \\
3. \text{ S} \rightarrow - \\
4. \text{ S} \rightarrow \varepsilon
\end{array}

\begin{array}{c}
5. \text{ R} \rightarrow .\text{dN} \\
6. \text{ R} \rightarrow \text{dN.N} \\
7. \text{ N} \rightarrow \text{dN} \\
8. \text{ N} \rightarrow \varepsilon
```

Montagem do autômato de decisão (3)

Falta acrescentar os itens

Gramática

1.
$$V \rightarrow SR \vdash$$

$$2. S \rightarrow +$$

3.
$$S \rightarrow -$$

$$4. S \rightarrow \varepsilon$$

5. R
$$\rightarrow$$
 .dN

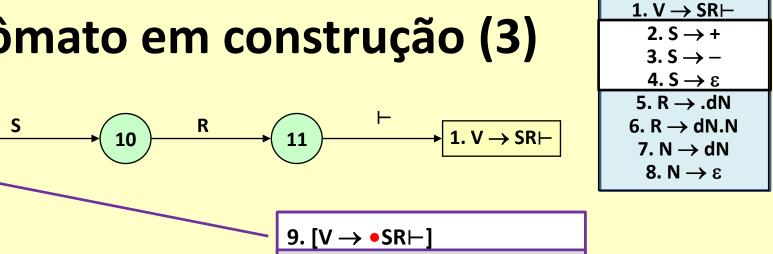
6. R
$$\rightarrow$$
 dN.N

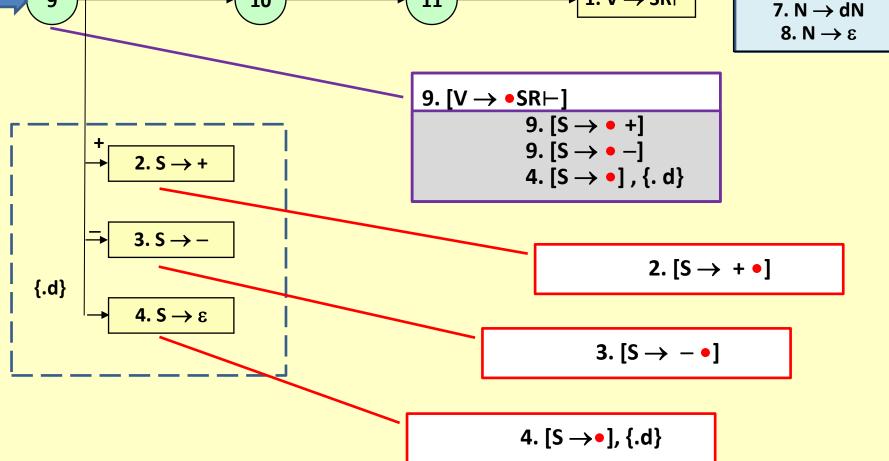
7.
$$N \rightarrow dN$$

8. N
$$\rightarrow \epsilon$$

2.
$$[S \rightarrow + \bullet]$$

3. $[S \rightarrow - \bullet]$


os quais completam as produções 2 e 3.


A produção 4, antes completada,

4.
$$[S \rightarrow \bullet]$$
, $\{.d\}$

vem acompanhada de um conjunto de look-ahead, a ser testado no estado 9: os símbolos possíveis após S correspondem ao conjunto follow(S) = first (R) = {. d}

Autômato em construção (3)

Montagem do autômato de decisão (4)

O ítem 10:

10.
$$[V \rightarrow S \cdot R \vdash]$$

Gramática

1.
$$V \rightarrow SR \vdash$$

$$2. S \rightarrow +$$

3.
$$S \rightarrow -$$

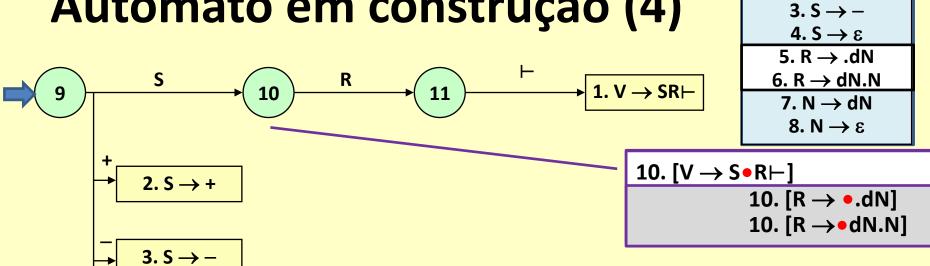
$$4. S \rightarrow \epsilon$$

5.
$$R \rightarrow .dN$$

6. R
$$\rightarrow$$
 dN.N

7. N
$$\rightarrow$$
 dN

8. N
$$\rightarrow \epsilon$$


apresenta o marcador à esquerda do nãoterminal R. Isso exige a expansão de R segundo as regras 5, 6, pela adição de estados associados a itens com marcadores à esquerda dos lados direitos dessas duas regras:

Nesses itens, não há não-terminais à direita de marcadores, portanto novas expansões não são necessárias, completando-se assim o conjunto de itens LR(1) relativos ao estado 10.

Autômato em construção (4)

{.d}

4. $S \rightarrow \epsilon$

1. $V \rightarrow SR \vdash$ $2. S \rightarrow +$

Montagem do autômato de decisão (5)

Prosseguindo, escrevem-se os outros itens associados ao não-terminal R, determinando os estados adicionais a serem incorporados ao autômato de decisão, relativos às regras 5 e 6 de R:

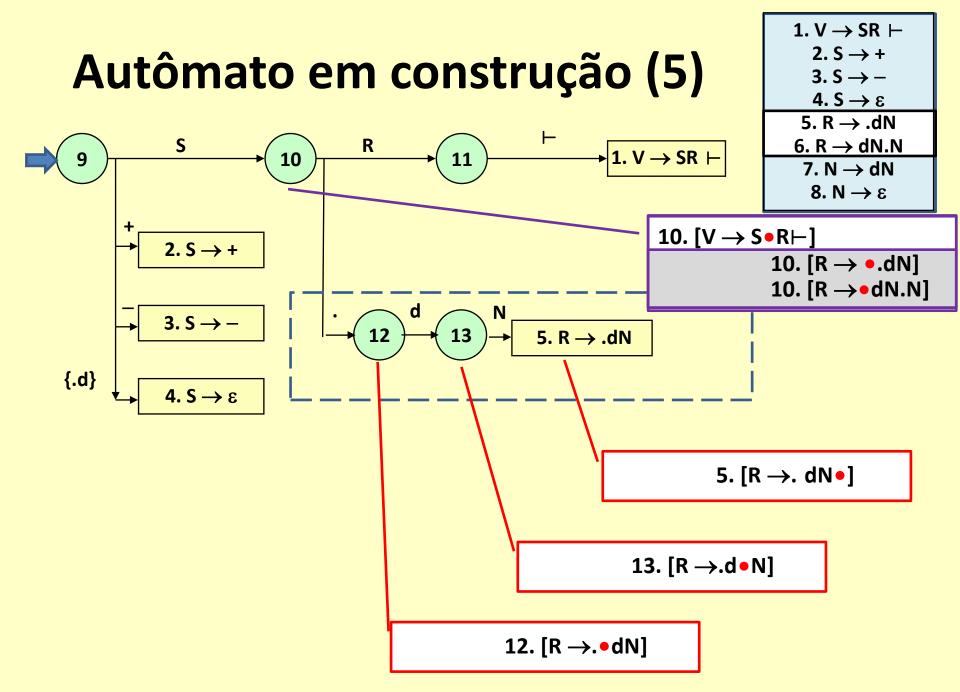
Gramática

1.
$$V \rightarrow SR \vdash$$

$$2. S \rightarrow +$$

$$3. S \rightarrow -$$

$$4. S \rightarrow \epsilon$$


5.
$$R \rightarrow .dN$$

6. R
$$\rightarrow$$
 dN.N

7. N
$$\rightarrow$$
 dN

8. N
$$\rightarrow \epsilon$$

Desenvolvendo a parte relativa à regra 5:

Montagem do autômato de decisão (6)

Gramática

1.
$$V \rightarrow SR \vdash$$

$$2. S \rightarrow +$$

$$3. S \rightarrow -$$

$$4. S \rightarrow \epsilon$$

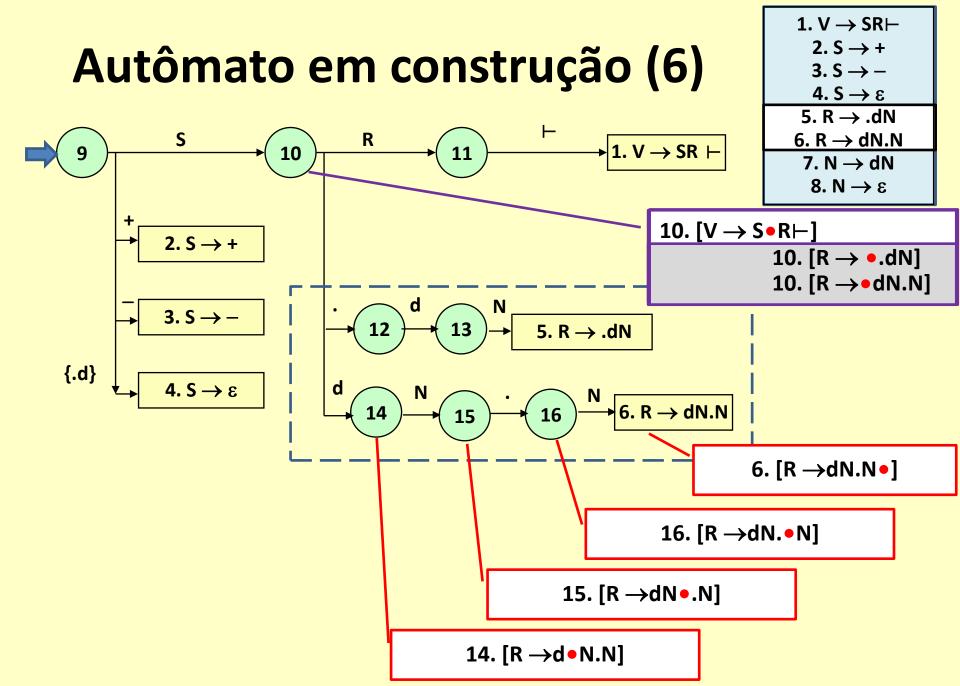
5. R
$$\rightarrow$$
 .dN

6. R
$$\rightarrow$$
 dN.N

7. N
$$\rightarrow$$
 dN

8. N
$$\rightarrow \epsilon$$

Desenvolvendo em seguida a parte relativa à regra 6:


14.
$$[R \rightarrow d \cdot N.N]$$

15.
$$[R \rightarrow dN \cdot .N]$$

16.
$$[R \rightarrow dN. N]$$

6.
$$[R \rightarrow dN.N_{\bullet}]$$

resulta:

Montagem do autômato de decisão (7)

O ítem correspondente ao estado 11:

11.
$$[V \rightarrow SR_{\bullet} \vdash]$$

Gramática

1.
$$V \rightarrow SR \vdash$$

$$2. S \rightarrow +$$

3.
$$S \rightarrow -$$

$$4. S \rightarrow \epsilon$$

5.
$$R \rightarrow .dN$$

6.
$$R \rightarrow dN.N$$

7.
$$N \rightarrow dN$$

8. N
$$\rightarrow \epsilon$$

apresenta o marcador à esquerda do terminal ⊢, logo não exige expansão adicional.

Resta expandir três instâncias do não-terminal N: do estado 13 para 5, do estado 14 para 15 e do estado 16 para 6:

13.
$$[R \rightarrow .d \cdot N]$$

5. $[R \rightarrow .dN \cdot]$
14. $[R \rightarrow d \cdot N.N]$
15. $[R \rightarrow dN \cdot .N]$
16. $[R \rightarrow dN \cdot N]$
6. $[R \rightarrow dN \cdot N \cdot]$

Montagem do autômato de decisão (8)

Gramática

1.
$$V \rightarrow SR \vdash$$

$$2. S \rightarrow +$$

3.
$$S \rightarrow -$$

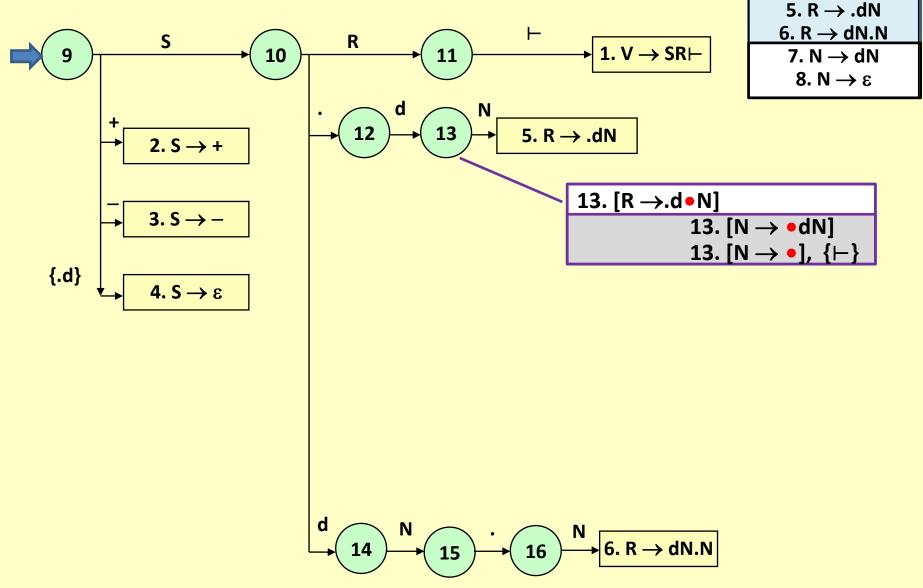
4.
$$S \rightarrow \epsilon$$

5.
$$R \rightarrow .dN$$

6. R
$$\rightarrow$$
 dN.N

7. N
$$\rightarrow$$
 dN

8. N
$$\rightarrow \epsilon$$


Iniciando pela instância que leva do estado 13 para o estado 5:

13.
$$[R \rightarrow .d \cdot N]$$

acrescentam-se o seguintes itens, relativos às regras 7 e 8 que definem o não-terminal N:

já que follow(N)=follow(R)= $\{\vdash\}$

Autômato em construção (7)

1. $V \rightarrow SR \vdash$ 2. $S \rightarrow +$

> 3. $S \rightarrow -$ 4. $S \rightarrow \varepsilon$

Montagem do autômato de decisão (9)

Desenvolvendo os itens associados a

13.
$$[N \rightarrow \bullet dN]$$

acrescentam-se os seguintes estados:

17.
$$[N \rightarrow d \cdot N]$$

7.
$$[N \rightarrow dN_{\bullet}]$$

Notar que para desenvolver os itens relativos a

17.
$$[N \rightarrow d \cdot N]$$

seria preciso expandir novamente N, surgindo:

17'.
$$[N \rightarrow d \cdot N]$$

7'. $[N \rightarrow dN \cdot]$

idênticos aos estados 17 e 7, respectivamente.

Como isso se repetiria indefinidamente, o melhor é simplificar o autômato, com a ajuda do conhecido lema de Arden, convertendo-se então a recursão em N em um fecho de Kleene sobre {d}.

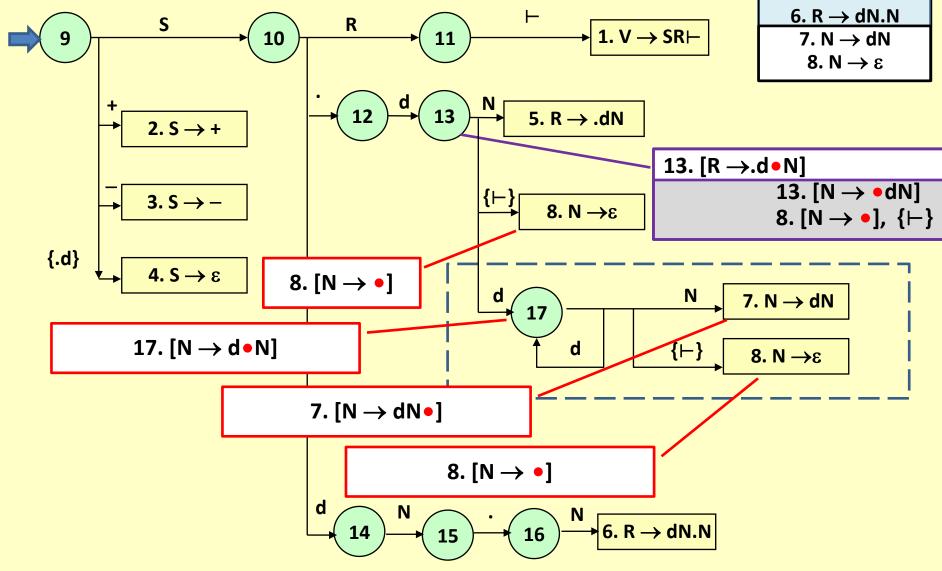
Gramática

1.
$$V \rightarrow SR \vdash$$

$$2. S \rightarrow +$$

$$3. S \rightarrow -$$

$$4. S \rightarrow \epsilon$$


5.
$$R \rightarrow .dN$$

6.
$$R \rightarrow dN.N$$

7.
$$N \rightarrow dN$$

8. N
$$\rightarrow \epsilon$$

Autômato em construção (8)

1. $V \rightarrow SR \vdash$ 2. $S \rightarrow +$

3. $S \rightarrow -$ 4. $S \rightarrow \varepsilon$ 5. $R \rightarrow .dN$

Montagem do autômato de decisão (10)

Pode-se repetir o procedimento para o item

14.
$$[N \rightarrow \bullet dN]$$

acrescentando-se os seguintes estados:

18.
$$[N \rightarrow d \cdot N]$$

7. $[N \rightarrow dN \cdot]$

E também para o item

16.
$$[N \rightarrow \bullet dN]$$

acrescentando-se os seguintes estados:

19.
$$[N \rightarrow d \cdot N]$$

7. $[N \rightarrow dN \cdot]$

Naturalmente, apesar de estar sendo mencionado repetidamente por questão didática, no autômato o estado 7 é único.

O mesmo ocorre com o estado 8, variando porém o seu conjunto de look-ahead: para o estado 14, é $\{.\}$, e para o estado 16, é $\{\vdash\}$.

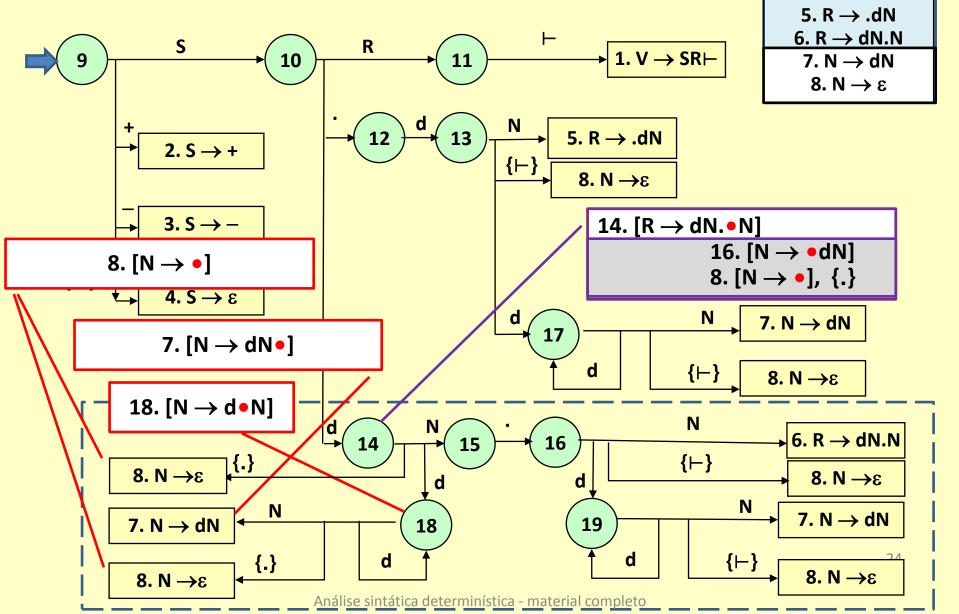
Gramática

1.
$$V \rightarrow SR \vdash$$

$$2. S \rightarrow +$$

3.
$$S \rightarrow -$$

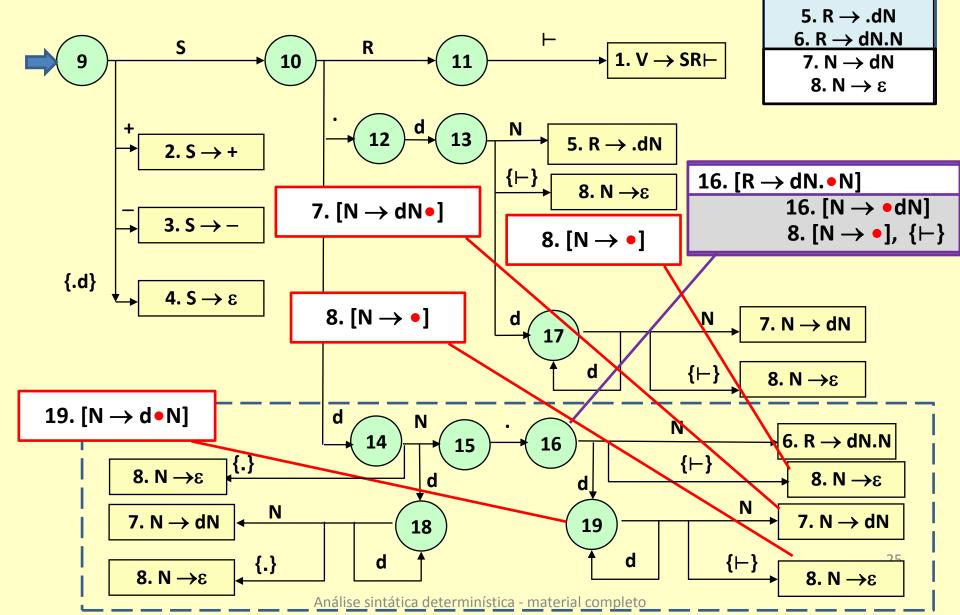
$$4. S \rightarrow \varepsilon$$


5.
$$R \rightarrow .dN$$

6.
$$R \rightarrow dN.N$$

7.
$$N \rightarrow dN$$

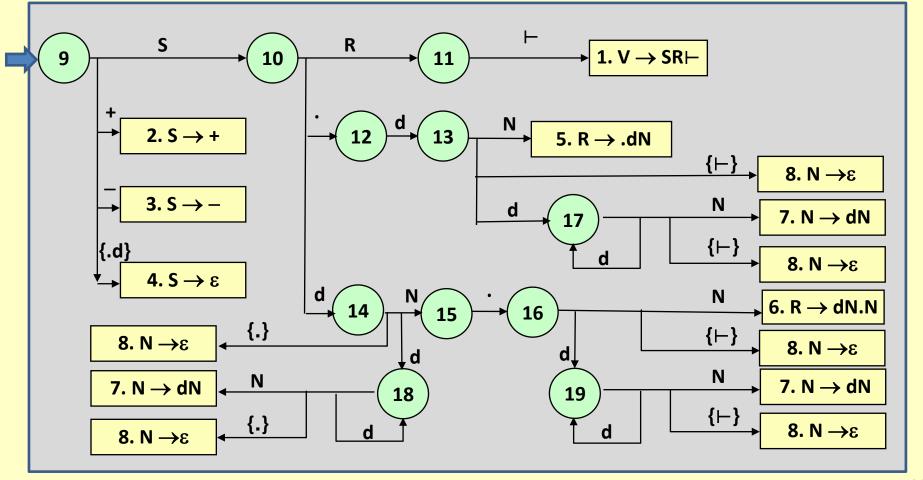
8. N
$$\rightarrow \epsilon$$


Autômato em construção (9)

1. $V \rightarrow SR \vdash$ 2. $S \rightarrow +$

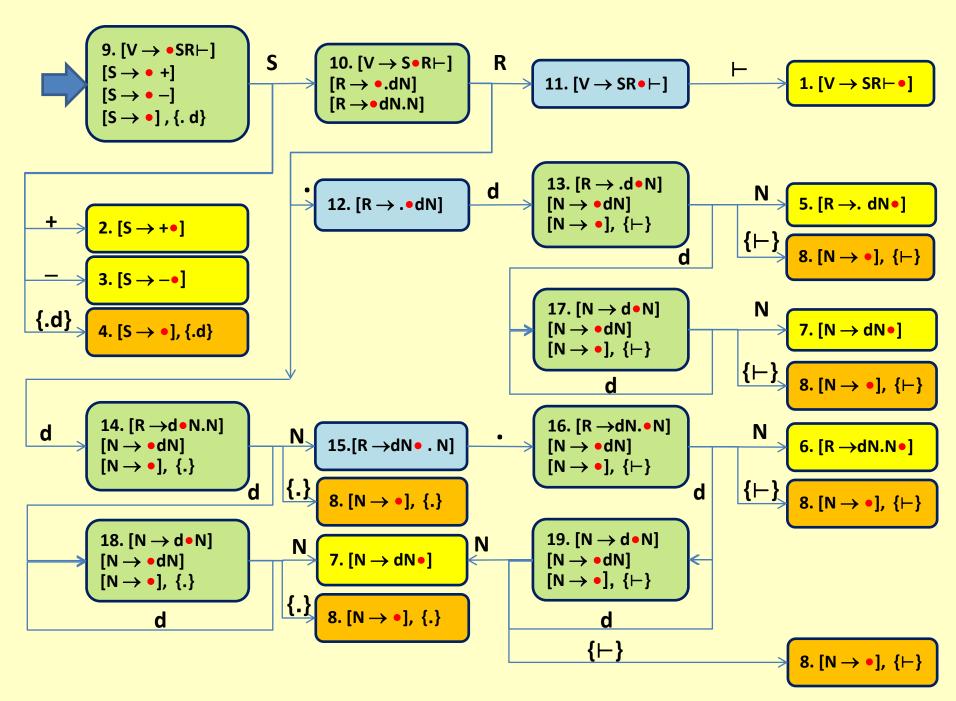
> 3. $S \rightarrow -$ 4. $S \rightarrow \varepsilon$

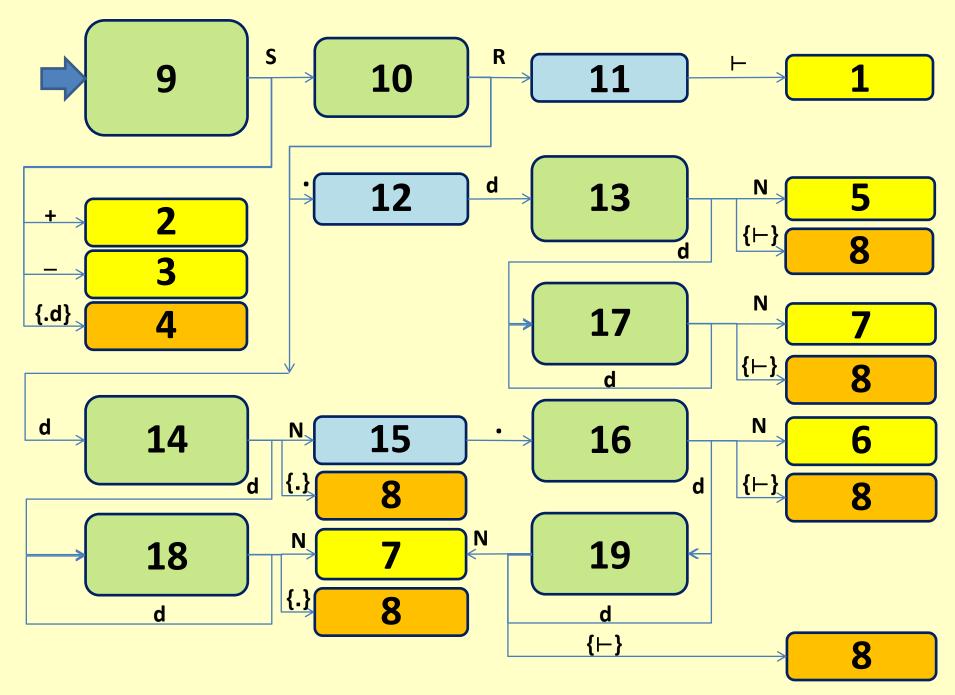
Autômato em construção (10)


1. $V \rightarrow SR \vdash$ 2. $S \rightarrow +$

> 3. $S \rightarrow -$ 4. $S \rightarrow \varepsilon$

Autômato final


(Autômato de decisão)


1. $V \rightarrow SR \vdash$ 2. $S \rightarrow +$ 3. $S \rightarrow -$ 4. $S \rightarrow \varepsilon$ 5. $R \rightarrow .dN$ 6. $R \rightarrow dN.N$ 7. $N \rightarrow dN$ 8. $N \rightarrow \varepsilon$

Comparação

- Compare o autômato final obtido no slide anterior com o mostrado no slide a seguir.
- Para facilitar a comparação, tomou-se o cuidado de adotar para este último autômato a mesma numeração de estados já utilizada no autômato previamente construído usando a intuição.
- Veja o conjunto de produções marcadas dentro de cada estado, as quais podem ser usadas para interpretar a situação da análise em cada estado.

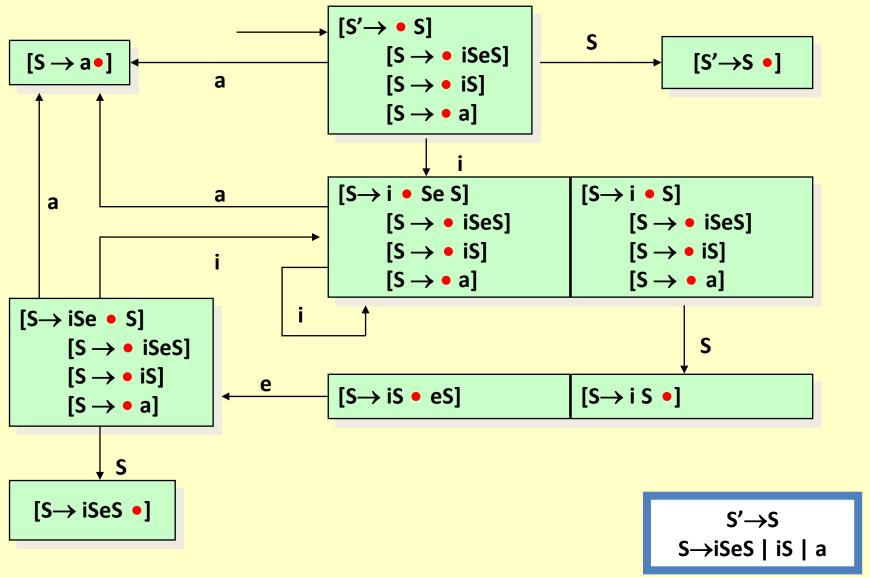
Tabela de análise

	S	R	N	V	+	_		d	⊢
9	r/10	-	-	-	a/2	a/3	1/4	1/4	-
10	-	r/11	-	1	-	-	r/12	r/13	-
11	-	1	1	ı	1	ı	1	ı	a*/1
12	-	•	•	1	•	-	•	r/14	-
13	-	•	r/15	ı	•	-	1/8	r/18	-
14	-	•	a/5	1	•	-	•	r/16	1/8
15	-	•	•	1	•	-	r/17	1	-
16	-	-	a/7	-	-	-	-	r/16	1/8
17	-	-	a/6	1	-	-	-	r/19	1/8
18	-	-	a/7	1	-	-	1/8	r/18	1/8
19	-	-	a/7	ı	-	-	-	r/19	1/8

```
1. V \rightarrow SR \vdash
2. S \rightarrow +
3. S \rightarrow -
4. S \rightarrow \varepsilon
5. R \rightarrow .dN
6. R \rightarrow dN.N
7. N \rightarrow dN
8. N \rightarrow \varepsilon
```

```
a = apply
r = read
I = look-ahead
* = accept
- = erro de sintaxe
```

Esta tabela foi obtida por uma simples transcrição do autômato previamente construído


Construção de Analisadores LR

Item LR(k):

```
produção marcada : [A \to \alpha \bullet \beta, \lambda] relativa à produção de P: A \to \alpha\beta cadeia de lookahead: \lambda
```

- Abrevia-se o conjunto $\{[A \rightarrow \alpha \bullet \beta, \lambda_i] \mid i=1,...,n\}$ como $[A \rightarrow \alpha \bullet \beta, \{\lambda_1 \lambda_2 ... \lambda_n\}]$
- Cada estado de um analisador LR(k) corresponde a um conjunto específico de itens LR(k)

Exemplo

MÉTODO RECURSIVO ASCENDENTE

Método ascendente recursivo (1) (recursive ascent)

- Implementação literal conceitual da análise LR.
- Cada função do analisador representa um único estado do autômato LR.
- Dentro de cada função, um desvio múltiplo seleciona a ação a ser executada, com base no token corrente, extraído da pilha de entrada.
- Identificado o *token*, uma ação é escolhida e executada, com base no estado corrente.

Recursive ascent (2)

- Conforme o token em questão, pode haver duas diferentes ações fundamentais a tomar:
 - Shift Codificada como uma chamada de função, sua ação é de desviar para um próximo estado do autômato de decisão.
 - Reduce Codificada de acordo com a rotina de ação semântica que é relevante para a produção, no caso.
 A saída desta rotina é passada, em uma estrutura de dados, para a rotina chamadora.
 - A ação de redução devolve ao chamador também o número de *tokens* que foram *shifted* (ou seja, o comprimento da redução a efetuar), além do valor associado à ação, ou seja, o contador de *shifts* determina o ponto da pilha de trabalho até o qual a operação de redução deve atuar.

Recursive ascent (3)

- Há ainda uma terceira ação do autômato LR, que pode ser necessária em um dado estado, mas apenas depois de uma redução na qual o contador de *shifts* tenha sido zerado (indicando que o estado corrente pode manipular o resultado).
- Trata-se da ação goto, que é essencialmente um caso particular de shift, projetado para manipular, em particular, os não-terminais de uma produção.
- Esta ação deve ser manuseada depois do comando de desvios múltiplos, já que é nesse ponto que os resultados de qualquer redução irão aflorar no topo da pilha, após terem estado temporariamente submersos.

CONSTRUÇÃO DE TABELAS LR(1)

Construção de tabelas LR(1)

- Montar o autômato de controle a partir da gramática
- Codificar ações e transições nas tabelas de ações e goto
- Se todas as células da tabela tiverem um único elemento, trata-se realmente de uma tabela LR(1)

Visão geral

- Modela o estado da análise usando conjuntos de itens LR(1)
- Usa duas funções: goto(s, X) e closure(s)
 - goto() é similar a move() na construção dos subconjuntos
 - closure() acrescenta as informações necessárias para completar o estado
- Constrói estados e transições do autômato de controle
- Usa essa informação para preencher as tabelas de ações e goto

Ítens LR(1)

Uma configuração válida de um analisador LR(1) é representada por uma estrutura chamada ítem LR(1)

Um ítem LR(1) é um par [P, δ], em que

- P é uma produção $A \rightarrow \beta \gamma$ com o marcador em alguma posição da expressão $\beta \gamma$, do seu lado direito.
- δ é o conjunto de *look-aheads*, com comprimento \leq 1.

O marcador • em um item denota a posição associada ao topo da pilha:

- $[A \rightarrow \beta \gamma, \underline{a}]$ indica que a entrada que já foi analisada é consistente com o uso de $A \rightarrow \beta \gamma$ imediatamente à direita do símbolo do topo da pilha.
- $[A \rightarrow \beta \bullet \gamma, \underline{a}]$ indica que a entrada já analisada é consistente com o uso de $A \rightarrow \beta \gamma$ nesse ponto da análise, \underline{e} que o analisador já reconheceu β (ou seja, β já está no topo da pilha).
- $[A \rightarrow \beta \gamma \bullet ,\underline{a}]$ indica que o analisador já encontrou $\beta \gamma$, e também que o símbolo de *look-ahead* de \underline{a} é consistente com a redução de $\beta \gamma$ para A.

A produção $A \rightarrow \beta$, com $\beta = B_1B_2B_3$ com *lookahead* \underline{a} , pode dar origem a quatro itens (naturalmente, o conjunto de itens LR(1) para uma dada gramática é finito) $[A \rightarrow B_1B_2B_3, \underline{a}], [A \rightarrow B_1 B_2B_3, \underline{a}], [A \rightarrow B_1B_2B_3, \underline{a}], [A \rightarrow B_1B_$

Para que, afinal, manter todos esses símbolos de lookahead?

- Facilitam a escolha da redução correta
- Look-aheads documentam o processo, a não ser com na extremidade direita.
 - − Não tem uso imediato em [A \rightarrow β γ , <u>a</u>]
 - − Em [A \rightarrow β •, <u>a</u>], um *look-ahead* de <u>a</u> implica uma reduction com A \rightarrow β
 - − Para um analisador modelado usando ítens {[A→β•, <u>a</u>], [B→γ•δ , <u>b</u>]}, o *look-ahead* de <u>a</u> ⇒ *reduce* para *A*; *look-ahead* em FIRST(δ) ⇒ *shift*

Um contexto limitado à direita é suficiente para a correta escolha das ações a tomar.

Construção da tabela

Montar I, a coleção canônica de conjuntos de ítens LR(1)

Iniciar com o estado inicial apropriado, s_0

- ♦ $[S' \rightarrow \bullet S_{,EOF}]$, juntamente com todos os itens a ele equivalentes
- ◆ Determinar os equivalentes usando o procedimento *closure*(s₀)

Para cada s_k , e cada x, calcular repetidamente os **goto** (s_k,x)

- ◆ Se o conjunto obtido ainda não estiver incluído, incluí-lo.
- ◆ Registrar todas as transições criadas por goto()

Este procedimento atinge um ponto fixo em algum momento.

Preencher a tabela com a coleção de conjuntos de itens LR(1) assim obtida.

EXERCÍCIO SOBRE TABELAS DE ANÁLISE ASCENDENTE LR(1)

Para treinar com tabelas de análise

 Construa uma tabela de análise LR(k) para a linguagem definida pela gramática a seguir.

```
1. S = a := E

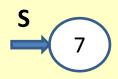
2. E = E + T | T

3. T = F * T | F

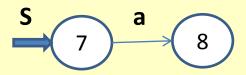
4. F = a | n | (E) | a (Q)

5. Q = P | E

6. P = E , P | E
```


Marcação inicial das produções

Notar que é desnecessário neste método efetuar alterações gramaticais.


1. NÃO-TERMINAL S (RAIZ) S = a:= E

Itens LR(1) associados a esta produção marcada:

7. S = • a := E

8. S = a • := E

9. S = a := • E

9. S = a := E

- Notar que, na produção marcada 9, a marca precede E, que é um não-terminal.
- Isso exige que se expanda E ver adiante esta operação, descrita no item 2. Não-terminal E.
- O diagrama associado a este item tem início no estado 10.
- Por essa razão, no estado 9 do diagrama está indicado um desvio para o estado 10, caso o símbolo de look-ahead E não for encontrado.
- No lugar de deliberar por exclusão, é possível usar outra forma, mais rigorosa e que dá resultados mais precisos, de tomar essa decisão: fazer look-ahead dos símbolos que constituem o conjunto *First* (E)={ a,n,(}.

2. NÃO-TERMINAL E E = E + T | T

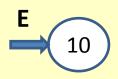
2.
$$E = \bullet E + T \mid \bullet T$$

2.a.
$$E = E + T$$

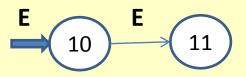
Itens LR(1) associados:

10.
$$E = \bullet E + T$$

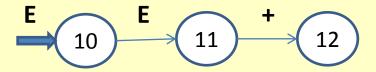
11.
$$E = E \cdot + T$$

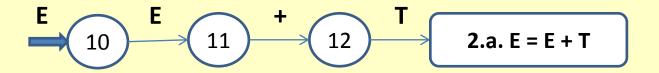

12.
$$E = E + \bullet T$$

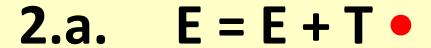
2.b.
$$E = T$$

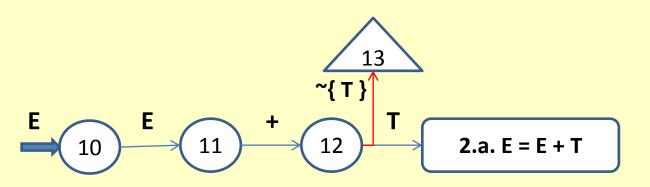

Itens LR(1) associados:

2.a. PRIMEIRA OPÇÃO: E = E + T

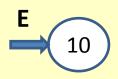

10. E = E + T


11. E = E - T

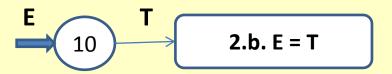


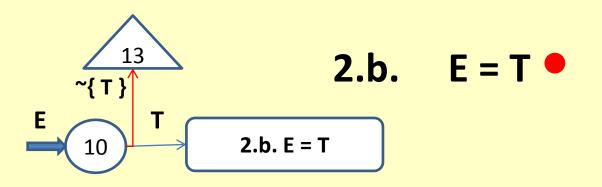

12. $E = E + \bullet T$

2.a. E = E + T •



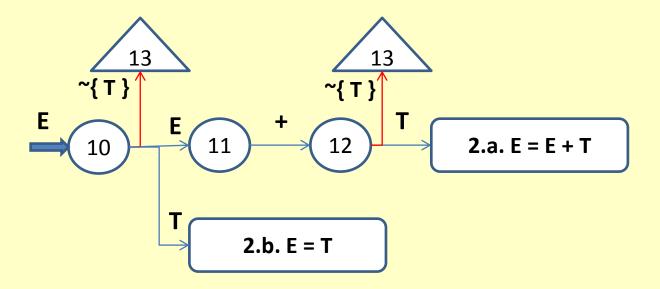
Incluiu-se no diagrama acima (em vermelho) um desvio no estado 12, para o estado 13, em função do resultado de operação de look-ahead do conjunto de símbolos que podem surgir a partir de T, e dos terminais que podem iniciar uma construção sintática aderente à regra associada ao não-terminal T.


O estado 13 é onde se inicia o diagrama que representa essa situação. No estado 10 a presença de E à direita exigiria a expansão do nãoterminal, mas como é exatamente este o papel do estado 10, não há necessidade de inserir um desvio explícito para o estado 10.


2.b – SEGUNDA OPÇÃO: E = T

10. E = ■ T

2.b. E = T ●



Incluiu-se aqui no diagrama acima um desvio no estado 10, para o estado 13, em função do resultado de operação de *look-ahead* do conjunto de símbolos que podem surgir a partir de T, e dos terminais que podem iniciar uma construção sintática aderente à regra associada ao não-terminal T.

O estado 13 é onde se inicia o diagrama que representa essa situação. No estado 10 a presença de T à direita exige a expansão do nãoterminal, o que está representado pelo desvio explícito para o estado 13, em vermelho.

JUNTANDO AS REGRAS EM E: E = E + T | T

$E = E + T \mid T$

3. NÃO-TERMINAL T T = F * T | F

3.
$$T = \bullet F * T | \bullet F$$

3.a.
$$T = F * T$$

Itens LR(1) associados:

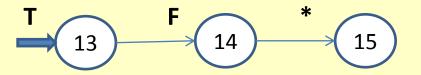
14.
$$T = F \cdot T$$

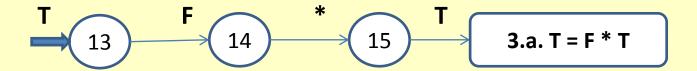
15.
$$T = F * \bullet T$$

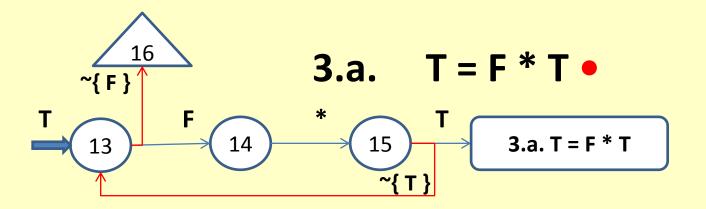
3.b.
$$T = F$$

Itens LR(1) associados:

PRIMEIRA OPÇÃO: 3.a. T = F * T

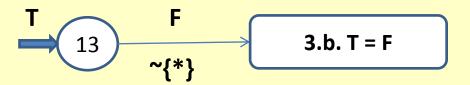

13. T = F * T


14. $T = F \cdot T$



15. $T = F * \bullet T$

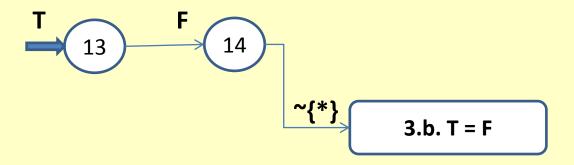
3.a. $T = F * T \bullet$


Incluiram-se no diagrama acima um desvio no estado 13, para o estado 16, em função do resultado de operação de look-ahead do conjunto de símbolos que podem surgir a partir de F, e dos terminais que podem iniciar uma construção sintática aderente à regra associada ao não-terminal F. O estado 16 é onde se inicia o diagrama que representa essa situação.

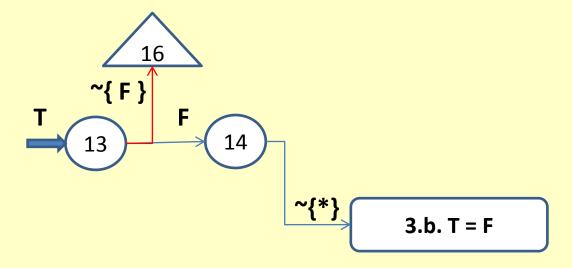
No estado 15, a presença de T à direita exigiria a expansão do não-terminal, porém isso não é feito porque o diagrama em construção refere-se exatamente ao tratamento do não-terminal T. Por isso, acrescentou-se apenas um desvio do estado 15 para o estado 13, em função do look-ahead de símbolos diferentes de T. Trata-se de uma instância de aplicação do Lema de Arden, dado que se trata da eliminação de uma recursão à direita do não-terminal T.

SEGUNDA OPÇÃO: 3.b. T = F

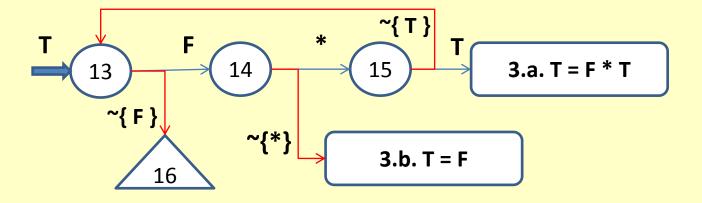
13. T = F



Redesenhando:


Notar que, devido à existência da opção 3.a. esta decisão não pode ser feita diretamente, razão pela qual é preciso efetuá-la por exclusão, descartando a possibilidade de prosseguir a análise em 3.a. após encontrar um F.

Isso se conclui em vista do não-determinismo que se instala entre as opções 3.a. e 3.b., a qual se manifesta quando o símbolo seguinte ao F na forma sentencial não for um asterisco.


Este teste consiste em uma operação de look-ahead do símbolo asterisco. Para ficar compatível com o autômato associado à produção gramatical 3.a., o diagrama anterior pode ser redesenhado conforme abaixo:

Adicionalmente, acrescentou-se no estado 13 um desvio para o estado 16 em função de uma não ocorrência do look-ahead do não-terminal F. O estado 16 é o estado inicial do diagrama associado à análise completa do não-terminal F e de seus desdobramentos.

JUNTANDO AS REGRAS EM T: T = F * T | F

4. NÃO-TERMINAL F: F = a | n | (E) | a (Q)

4. F = a | n | (E) | a (Q)

Itens LR(1) associados:

16.
$$F = \bullet$$
 a

Itens LR(1) associados:

16.
$$F = \bullet (E)$$

17.
$$F = (\bullet E)$$

18.
$$F = (E \bullet)$$

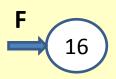
4.c.
$$F = (E)$$

Itens LR(1) associados:

Itens LR(1) associados:

16.
$$F = \bullet a(Q)$$

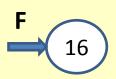
19.
$$F = a \cdot (Q)$$

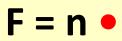

20.
$$F = a (\cdot Q)$$

21.
$$F = a(Q \bullet)$$

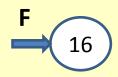
4.d.
$$F = a(Q)$$

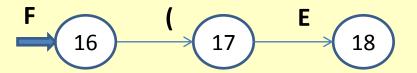
4.a. PRIMEIRA OPÇÃO F = a

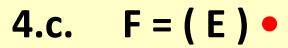


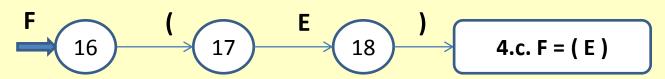


4.b. SEGUNDA OPÇÃO F = n

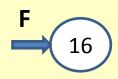


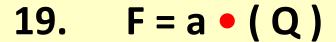


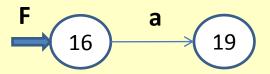

4.c. TERCEIRA OPÇÃO F = (E)

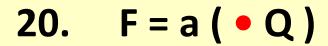


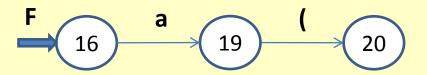
17. F = (• E)

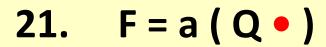


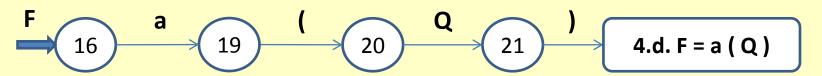


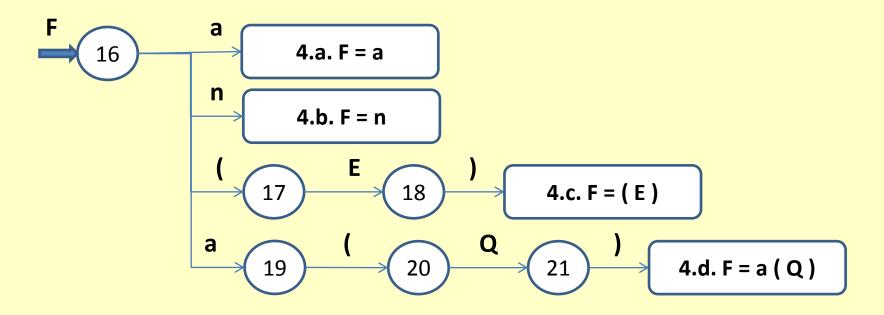




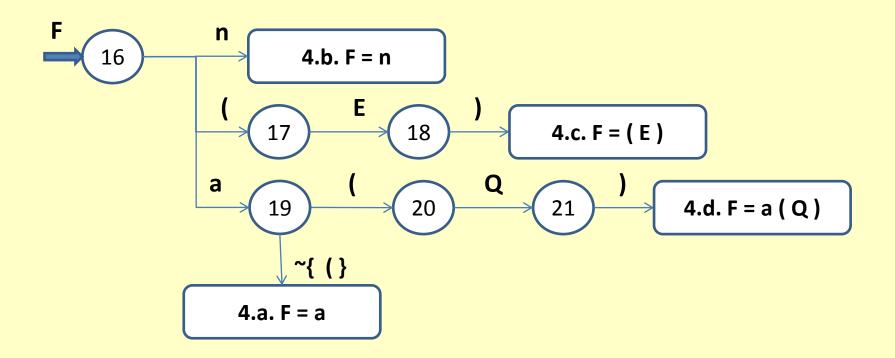

4.d. QUARTA OPÇÃO F = a (Q)







4.d. F = a(Q)



JUNTANDO AS OPÇÕES EM F: F = a | n | (E) | a (Q)

Observando-se o diagrama acima, é fácil notar o não-determinismo decorrente do prefixo comum **a** existente entre as regras 4.a. e 4.d. Esse não-determinismo pode ser facilmente removido no estado 19, usando-se o look-ahead de um símbolo abre-parênteses, e permitindo que a análise prossiga se o símbolo seguinte for um abreparênteses, e considerando encerrada a regra 4.a. em caso contrário.

Redesenhando

5. NÃO-TERMINAL Q

$$Q = P \mid \epsilon$$

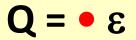
$$Q = P$$

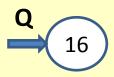
Itens LR(1) associados:

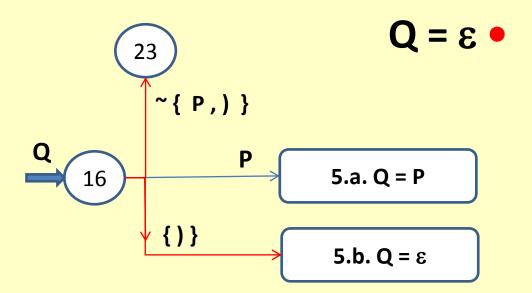
$$Q = Q$$


Itens LR(1) associados:

22.
$$Q = \bullet \varepsilon$$


5.b.
$$Q = \varepsilon$$


5a. PRIMEIRA OPÇÃO Q = P



5b. SEGUNDA OPÇÃO Q = ε

A regra 5.b., que interpreta como vazio o não-terminal Q, se aplica nesta situação se o símbolo em análise no estado 16 pertencer ao conjunto $Follow(Q) = \{ \}$. Portanto, decide-se pela aplicação da regra 5.b. quando o símbolo em análise for um fecha-parênteses.

Caso tal símbolo não seja P nem), desvia-se para o estado 23, no qual se inicia a análise do não terminal P.

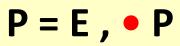
6. NÃO-TERMINAL P

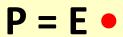
$$P = \bullet E, P \mid \bullet E$$

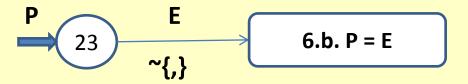
$$P = \bullet E, P$$

Itens LR(1) associados:

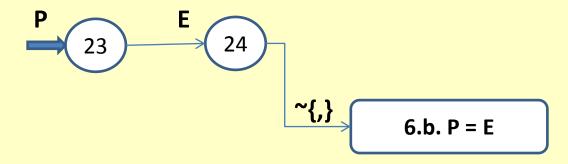
Itens LR(1) associados:


PRIMEIRA OPÇÃO: 6.a. P = E, P

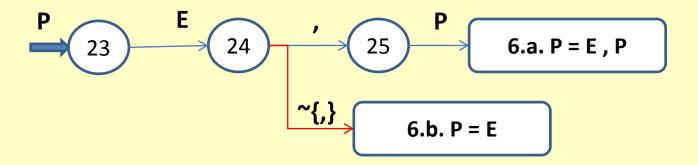




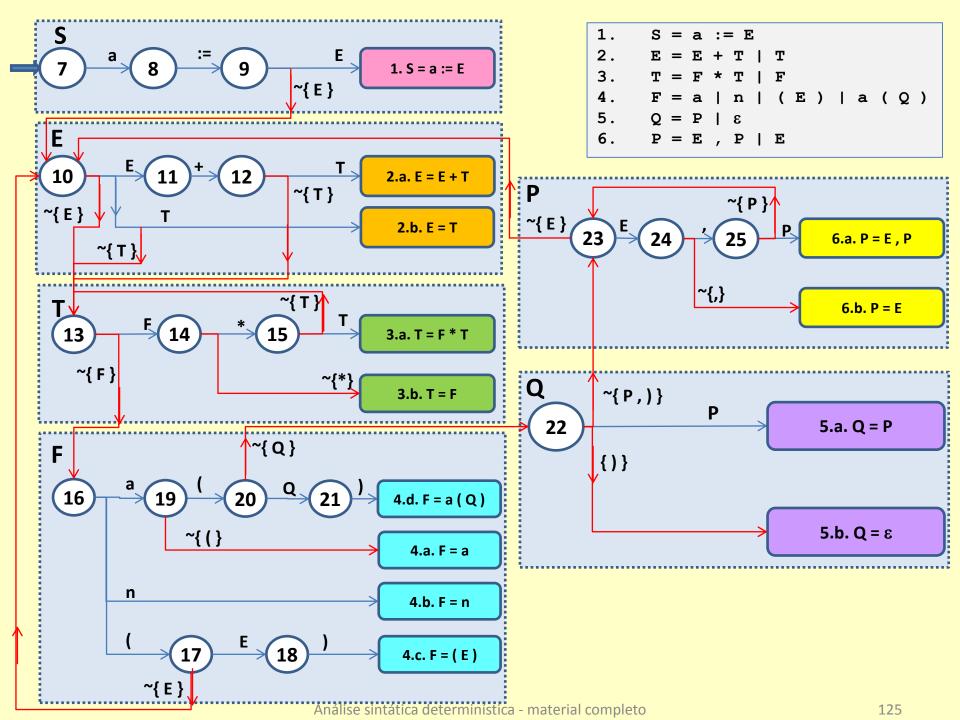
SEGUNDA OPÇÃO: 3.b. P = E


Redesenhando:

Este raciocínio é idêntico ao anteriormente realizado para o não terminal T. Devido à existência da opção 6.a. esta decisão não pode ser feita diretamente, razão pela qual é preciso efetuá-la por exclusão, ao descartar a possibilidade de prosseguir em 6.a. após encontrar um E.


Isso se conclui em vista do não-determinismo que se instala entre as opções 6.a. e 6.b., e se manifesta quando o símbolo seguinte ao E na forma sentencial não for uma vírgula.

Este teste consiste em uma operação de look-ahead.


Para ficar compatível com o da opção 6.a., o diagrama anterior pode ser redesenhado conforme abaixo:

JUNTANDO AS OPÇÕES EM P:

JUNTANDO TODOS OS DIAGRAMAS PARCIAIS, OBTÉM-SE, FINALMENTE:

